Spherical splines

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Spherical Harmonics and Tensor Spherical Splines

In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor elds are investigated and a decomposition formula is described. It is pointed out that the decomposition formula is of importance for the spectral analysis of the gra-vitational tensor in (spaceborne) gradiometry. Tensor spherical harmonics are introduced ...

متن کامل

Spherical Splines for Scattered Data

We study properties of spherical Bernstein-Bézier splines. Algorithms for practical implementation of the global splines are presented for a homogeneous case as well as a non-homogeneous. Error bounds are derived for the global splines in terms of Sobolev type spherical semi-norms. Multiple star technique is studied for the minimal energy interpolation problem. Numerical summary supporting theo...

متن کامل

Brain Image Analysis Using Spherical Splines

We propose a novel technique based on spherical splines for brain surface representation and analysis. This research is strongly inspired by the fact that, for brain surfaces, it is both necessary and natural to employ spheres as their natural domains. We develop an automatic and efficient algorithm, which transforms a brain surface to a single spherical spline whose maximal error deviation fro...

متن کامل

Spherical Splines for Data Interpolation and Fitting

We study minimal energy interpolation, discrete and penalized least squares approximation problems on the unit sphere using nonhomogeneous spherical splines. Several numerical experiments are conducted to compare approximating properties of homogeneous and nonhomogeneous splines. Our numerical experiments show that nonhomogeneous splines have certain advantages over homogeneous splines.

متن کامل

Non-rigid Surface Registration Using Spherical Thin-Plate Splines

Accurate registration of cortical structures plays a fundamental role in statistical analysis of brain images across population. This paper presents a novel framework for the non-rigid intersubject brain surface registration, using conformal structure and spherical thin-plate splines. By resorting to the conformal structure, complete characteristics regarding the intrinsic cortical geometry can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 1992

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/1992260100011